

Catálogo

Tratamento de Água

Produtos para Piscicultura - Catálogo

Catálogo

Índice

	Pagina
1) Fábrica de Peixe	3
2) Tanques Rede	3
3) Aeradores	4
3.1. Difusores 3.2. Fluxo Dirigido 3.3. Venturis	5 6 6
4)Filtros, Biofiltros e Mídias	7
5) Biofiltro – Zona de Raízes	8
6) Flotação e Flotadores (Skimmers)	9
7) Desinfecção Ultravioleta	9
8) Aero-Filtro- Aerador e Filtro de Lodo	10
9) Produtos Químicos e Biológicos	11
9.1. Corante Aquático – Azul Nat 9.2. Controle de Algas Verdes – Oxi Nat 9.3. Controle Qualidade de Água e Lodo - Bio Nat 9.4. Controle de Algas Verdes e Sedimentos – Nat Floc 9.5. Transparência a Água - CristalNat 9.6. Controle de Alcalinidade 9.7. Controle de Cloro 9.8. Controle de Amônia, 9.9. Controle de Dureza	11 12 12 13 14 14 15 15
10) Kits Análise de Água	16
10.1. Medição de Oxigênio dissolvido (OD), 10.2. Medição de pH, Alcalinidade, Cloro e Amônia 10.3. Medição de Microorganismos	16 16 17
11) Apostilas Técnicas	
11.1. Apostila sobre criação em tanque rede - PDF 11.2. Apresentação da Criação de Peixes - Baixa Renda - Power Point 11.3. Apostila sobre criação em fabrica e peixe - PDF 11.4. Apostila sobre criação de peixes em tanques escavados - PDF 11.5. Apostila sobre doenças Parasitoses e Sistemas e tratamento - PDF 11.6. Piscinas Naturais - PDF 11.7. Apostila sobre Aquaponia _PDF 11.8. Filme sobre Aquaponia - Windows Midia 11.9. Apresentação sobre Aquaponia - Power Point 11.10. Manual de Tratamento de Água - PDF	

Catálogo

1) Fábrica de Peixe

Enquanto na piscicultura podemos obter várias toneladas de pescado com baixo custo/m2, a produção de carne bovina em área correspondente, não passa de alguns quilos. Além disso, a piscicultura possibilita o uso racional de áreas alagadas, rios, represas, áreas escavadas por olarias, mangues e qualquer outro espaço **sem gasto de água**, utilizando os sistemas biológicos de purificação da água com **biofiltros SNatural**, eficientes para produção de peixe em **escala industrial** permitindo a lotação de **30 a 40 kg de biomassa por m3 de água**.

Tanque (m3)	Diâmetro (m)	Altura (m)	Peixe (Kg)	Cíclo (tq rede)	KG /mês	Kg /Cíclo(*)
5	2,6	1	150	1		150
7,5	3,2	1	225	1		225
10	3,8	1	300	1		300
15	4,5	1	450	5	225	450
20	5,1	1	600	5	300	600
30	6,4	1	900	5	300	900
50	8,3	1	1500	5	500	2500
70	9,5	1	2100	5	700	3500
100	11,5	1	3000	5	1000	10000

O sistema de purificação de água é feito com um biofiltro dimensionado para 350 kg de biomassa que se insere dentro do tanque. Cada biofiltro é formado de um aerador, um filtro para material particulado em fibra de poliestireno lavável para retirada periódica de fezes e restos e alimento e superfície para desenvolvimento de biofilme. O sistema é flutuante de fácil de manuseio

Peixes Cultivados

Tílápia – Peixe mais cultivado do Brasil

Bejupira – Espécie com Alto Potencial

Tucunaré

Pacú

Tambaqui

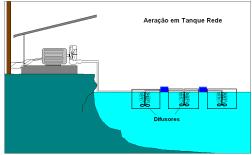
Curimbatá

2) Tanque Rede

O tanque rede facilita as operações de criação e manejo e proporciona:

- ► Taxas de conversão de 1,5 kg de ração para 1 kg de peixe vivo.
- ► Tanque Rede para uma criação simples de peixes acima de 25 q
- ▶"Equipamento aprovado por quem trabalha no dia-a-dia da criação."

Tanque	Dimensões	Capacidade	Peixe/Safra	Nr. Peixes
	(DiametroxProf)	(m3)	(Kg)	
TRC1000	2,5 x 1,5 m	4 m3	500 kg	1000
TRC1200	2,5 x 1,7 m	6 m3	600 Kg	1200


Tipos disponíveis: bolsão berçário, na cor azul (malha 1,5 x 2,5 mm) principalmente camarão pós larva; bolsão camarão, na cor azul (malha 4 x 4 mm) para engorda peixe ornamental e camarão; bolsão alevinagem, na cor azul (malha 5 x 5 mm) para peixe com 7 mm de altura mínimo; bolsão alevinão, na cor azul (malha 7 x 7 mm) para peixe em geral com tamanho a partir de 8 mm de altura); bolsão pré-engorda, na cor azul (malha 10 x 12 mm) para uma segunda fase, no caso da Tilápia ate 30 -50 gr. Passando da pré engorda o peixe passa para o bolsão engorda 1, na cor azul (malha 14 x 16 mm) para peixe ate ao final da engorda em lugares com ocorrência de Mandi); O bolsão engorda 2, na cor azul (malha 17 x 19 mm)é usado para Tilápia 300 gr ate o final da engorda 450 a 700 gr); dispomos também de

tampa anti-pássaro (malha 10 x 10 mm) e comedouro (malha 3 x 3 mm).

Aeração de Tanque Rede:

Para diminuir problemas de aeração e mortandade pela falta de oxigenação um sistema de aeração dentro do tanque rede previne problemas e ajuda o desenvolvimento do peixe em represas de pouca circulação de água.

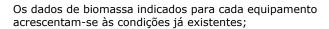
3) Aeradores

A matéria orgânica, folhas, fezes dos peixes, ração, animais mortos, etc., se concentram no fundo dos tanques e lagos para se decompor onde produzem amônia e outros gases tóxicos. A conseqüência imediata é que o fundo do tanque lagoa fica **inabitável** para organismos e portanto com menor volume útil.A falta de oxigênio reduz também a resistência a doenças e impede que o animal se alimente.

A aeração dobra a capacidade de criação de um tanque entretanto, se houver acumulação de lodo no fundo e este vier à tona por qualquer motivo poderá haver mortandade total do lote. O consumo de Oxigênio (O2 pelos peixes varia em função da espécie, da idade, da temperatura da água e da atividade dos peixes: a aeração artificial dobra a capacidade de lotação e biomassa de 4 para 8 a 10 ton/hectar. Lagoas sem aeração e fornecimento de alimento sustentam apenas de 1 a 2 tons/hectar.

A aeração de tanques tem várias conseqüências: permite uma maior **produção de peixe e camarão**, melhora a aparência dos lagos para **prática de esportes e, a** aeração, aumenta a **transparência da água**, acaba com os **odores** e reduz a probabilidade de ocorrência de **pragas e doenças** relacionadas à água como a Dengue e Leptospirose.

Os sistemas de aeração podem ser classificados de acordo com a necessidade:


- 1) Aeração para produção e Desestratificação de Lagos
- 2) Aeração para Explorações Comerciais de Peixe e Camarão
- 3) Aeração para Desestratificação e Produção de biomassa.

Sistemas:

1) Difusores - Aeração de Pequenos Tanques de Água


Utiliza **aeradores** de microbolhas **tubulares ou planos com** o dobro de eficiência em relação aos sistemas mecânicos de superfície tradicionais . O difusor P15 = Difusor plano de 15 cm de diâmetro; P20 = Difusor Plano com 20 cm de diâmetro.

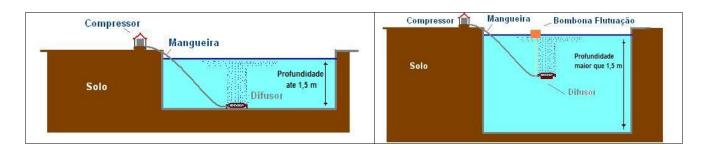
Aerador Aeromax	Biomassa (tons peixe)	Consumo (Watts/hora)	Difusores	Profundidade Difusor (m)	Vazão (L ar/min)
003	>0,5	35	01 P15	>1,5	5
007	>2,0	90	02xP15 ou 1xP20	>1,5	100
012	>3,0	150	2xP20 ou 3xP15	>1,5	150
0.5	>5,5	350	10xP15 ou 5xP20	>0,5	500
1.0	>11,0	700	24xP15 ou 12xP20	>1,0	700
3.0	>25,0	2100	3xAeromax1.0	>1,3	1200
5.0	>45,0	3500	5xAeromax1.0	>3,0	1500
7.5	>75,0	5250	7,5xAeromax1.0	>2,5	2000

Compressor 5 cv

Compres./Difusores P15/20

P/Tanques Ornamentais

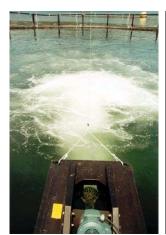
Aeração em profundidade


Aeração distribuída em tanques

Vários tanques/compressor

A instalação dos compressores 003 e 007 com um ou 2 difusores P15 ou P20 pode ser feita ate 1,5 m de profundidade e pode ser feita da seguinte maneira:

Para **tanques rasos** como os usados para piscicultura e carcinicultura (1- 2 m), se utilizam os difusores no fundo do tanque ou suspensos.



O aerador **Aeromax FD** de fluxo direcionado pode ser de 90 watts a 5 CV e mantêm em movimento toda a água de um tanque de **2 hectares/cv**. Para a oxigenação de **10 tons de biomassa** ou 1 hectare (10 000 m2) de lâmina de água se recomenda um aerador **Aeromax FD de 1 CV**. Este sistema de aeração para tanques de 2 m de profundidade média é usado nos EUA . O equipamento alia a eficiência de oxigenação do **ar difuso** com o arraste de água que "varre" o fundo do viveiro evitando o acumulo do lodo..

Aerador	CV	Dimensão (m)	(Kg)	Peixe (tons)
AeromaxFD1/2	1/2	1x1,5x0,9	50	5
AeromaxFD 1	1,0	1x1,5x0.9	50	10
AeromaxFD 2	2,0	2,0x1,5x0,9	70	20
AeromaxFD 5	5,0	6,5x1,5x0,9	170	45

O soprador esta conectado a uma grade de difusores produzindo de 800 a 1000 litros de ar/minuto na forma de bolhas de 1 a 2 mm que são rebatidas por uma parede dirigindo o fluxo para a frente, permitindo um tempo maior de contato com a água e aumentando a dissolução do ar na água.

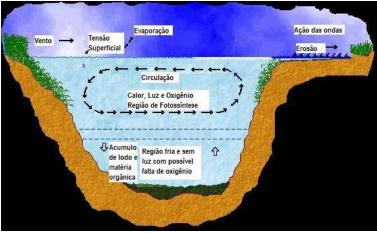
Indicado para **Pesque Pague**, aeração de tanques rede em áreas de baixa circulação de água, **criação de camarão e lagos ornamentais**

- não machucar os peixes (funcionamento amigáve);
- não levanta aerosóis e silencioso,
- pouca chance de prender linhas e
- se integra ao ambiente (fica submerso)
 - Sem engrenagens e sem erosão
 - Materiais de construção: aço inox, PEAD e PVC

Vídeo: http://www.youtube.com/watch?v=LbO1ZMP3Re8&feature=related

3) Venturis - Aeração de tanques ou Lagos Estratificados e Profundos

A principal finalidade da aeração neste caso é desestratificar as regiões profundas, acima de 3 - 4 metros utilizam-se **injetores com bombas submersíveis** ou compressores de alta pressão.


Uma bomba de água conectada a um bico injetor/Venturi de ar pode incorporar até 11 m3 de

ar/hora/ bico, suficiente para ate 100 tons de biomassa (peixe).

O sistema de aeração evita o acumulo de lodo de fundo e a injeção de água mantém o lodo sob agitação e suspensão oxidando-o rapidamente pelo oxigênio dissolvido. A aeração se faz com o Venturi conectado à mangueira de circulação de água vindo da bomba na superfície ou da bomba submersa. O sistema de aeração com Venturi pode ser usado **distribuído para vários tanques de criação.**

Utilizando bombas de água comuns o sistema pode ser implantado apenas com a aquisição de mangueiras e bicos injetores.

Modelos de Injetores/Venturis

Situação de um lago normal estratificado

Bomba de Superfície

Bomba Submersível

Mangueira utilizada Tanque aerado

Injetor	Ar produzido** (m3/hora) Om 3,5m 5m	Bomba (CV)	Biomassa (Kg)	Tamanho do tanque (m2)
Injenat 075	0,5 - 0,1 - 0,07	0,33	Até 70	Até 90
Injenat 250	1,4 - 0,4 - 0,2	0,5	Até 200	Até 250
Injenat 375	3,2 - 0,6 - 0,4	0,75	Até 400	Até 500
Injenat 500	14,0 - 11,0 - 5,1	1,5	Até 5100	Até 6 400

**Ar produzido pelo injetor em função da profundidade do tanque (Localização do bico injetor).

4) Filtros, Biofiltros e Mídias

Os sistemas biológicos de purificação da água com uso de mídia para desenvolvimento de microorganismos são eficientes para redução de matéria orgânica e de amônia (N-NH4) transformando a matéria orgânica em CO2 e a amônia em N2 (gás).

Considerando que a água de um tanque deve circular a cada 2-3 horas e que a mídia requer um tempo médio de contato da ordem de 6 minutos por m3 de água ou 75 litros de mídia por kg de alimento colocado, damos abaixo uma tabela de recomendação para os **três modelos de filtros disponíveis**

A mídia suporta cargas orgânicas da ordem de 1,5 kg de ração (40% de proteína) para cada 100 litros de mídia/dia. Na prática usam-se relações conservadoras de até 5 kg de ração para cada 100 litros de mídia no reator. Considerar que temperaturas abaixo de 10 °C necessitam de maior relação mídia/ração pois há menor crescimento de bactérias.

Equipamentos	Filtro Mini	Filtro 2	Filtro7
Tanque (m3)	0,3	1,7	6,7
Ar/minuto (litros)	60	100	460
Aeração do Filtro	compressor	Injetor(1)	Injetor(1/5)
Consumo (KWH)	0,09		
Bomba Circulação	0,25 CV	1,5CV	1,5 a 5 CV
Água (CV)			
Consumo (KWH)	0,2	1,0	1,0 a 3,5
Energia (KWH)	Aprox. 0,3	1,0	1,0 a 3,5

Especificações:

Área Total Superficial:750 a 800 m2/m3 Área Protegida: 450 a 500 m2/m3

Taxa Transferência Oxigênio:.8,5 g O2/m3/m
Taxa Nitrificação: 400 g NH4-N/m3/d (15 °C)
Taxa Denitrificação: 670 g NOX-N/m3/d (15 °C)
Taxa de Oxidação de BOD5: 6000 g BOD5/m3/d

(15 °C, R ≥80%)

NatMídia: sacos de 10 litros

Filtro Biológico Zona de Raízes

A Criação de Peixes (Tilápia) sem Renovação de Água - A piscicultura, na criação de Tilápia e outros peixes, entre seus problemas principais tem a manutenção da qualidade da água que determina o sucesso da exploração. Os peixes são demasiado sensíveis à falta de oxigênio, à poluição da água, à variação de temperatura, à salinidade, dureza, etc., e podem interromper seu crescimento normal caso suas necessidades não sejam atendidas.

Os peixes comem por dia 1-2% de seu peso, em ração, produzindo fezes e outros metabólicos que alteram a qualidade da água. A presença de amônia, gás sulfídrico (H2S), ácido carbônico e outros poluentes, são formados na decomposição anaeróbia desta matéria orgânica e na própria atividade metabólica dos peixes.

Para tratamento efetivo desta água possibilitando seu reuso, a **SNATURAL** desenvolve estudos com aeração e filtros biológicos que possibilitam uma qualidade de água constante e renovada.

O Filtro Biológico por **Leitos de Raízes** é capaz de tratar esta água, de forma simples, permitindo seu reuso e recirculação em circuito fechado.

Tanque do Projeto

Redes para coleta

Vista do Filtro Biológico

Compressor de Aeração

Aeração com difusores

Filtro Biológico com Papiro

Projetos de Aquaponia com **produção conjunta de peixes e alface** com a mesma água, sem adição de produtos químicos e adubos onde as plantas se alimentam da rica água adubada retirando os elementos para seu desenvolvimento e, em contrapartida, os peixes lucram com a água limpa, cristalina e sem nutrientes. Poluentes como o nitrogênio e fósforo, responsáveis pelo desenvolvimento de algas, doenças e intoxicação de peixes são retirados para o desenvolvimento das plantas.

Agrião e Alface

Criação e cultivo

Água cristalina e Peixes

Num projeto de circulação de 2000 litros/hora se colhem 2000 pés de agrião ou alface em 20 dias com a produção de 200 kg de peixe por m3 de água. Este é um tempo recorde se considerarmos que na terra normalmente se conseguem estes rendimentos em 45 dias e na hidroponia em 25 dias. A qualidade do produto produzido é

excelente, com aparência muito melhor e saudável comparada com a produzida em terra, em sistemas tradicionais.

5) Flotação & Flotadores (Skimmer)

Água com elevada Qualidade

A **flotação** no tratamento de água para criação de peixes, manutenção de transparência da água e retirada de odores, **separa líquidos de sólidos e de substâncias oleaginosas.** O principio de funcionamento é com nuvens de microbolhas de ar que arrastam as impurezas em suspensão para a superfície.

O **flotador** funciona por "captura" das impurezas fazendo-as flutuar. As microbolhas produzidas na câmara de flotação se prendem às **partículas sólidas e óleos** formando aglomerados que são carregados para a superfície. A espuma produzida na superfície é então retirada.

Água confinada em tanques de peixe, lagos e lagoas, contêm resíduos orgânicos e nutrientes que afetam a qualidade da água e só são notados no momento em que já atingiram níveis de descontrole.

Os flotadores ou "Skimmers" de proteína funcionam levando em conta que a maioria dos compostos orgânicos solubilizados (COD) têm propriedades bipolares: uma parte é atraída pelas bolhas e a outra pela água.

O flotador permite uma redução de 40% no nitrogênio total existente num tanque de peixes (30 m3 com 67 kg de biomassa e alimentação de 0,8 kg de ração por dia). Após 9 dias de operação com recirculação de 5 horas observam-se os seguintes resultados.

Skimmer

Equipamento	Capacidade (litros /Hora)	Tanque (m3)	Dimensões Cm (A x D x L)	Conexão (pol)
Natural Flot 1	2800	Até 22	112,5/67,5/30	1 1/2
Natural Flot 2	9250	Até 444	130,5/82,5/40	1 ½

6) Desinfecção Ultravioleta

Os **peixes e outros organismos aquáticos**, em aquário, estão confinados a uma pequena quantidade de água. Os resíduos tóxicos incluem a **amônia** liberada pelas brânquias, fezes e restos de comida.

Infecções por parasitas como **fungos, bactérias e vírus**, são preocupação constante. A esterilização da água ajuda a controlar infecções existentes na água e controla o contágio entre tanques.

A **radiação ultravioleta (UVC)** mais efetiva no controle de microorganismos tem comprimento de onda de 254 nm (nanometros) e para ser efetivo deve expor os microorganismos a uma intensidade de luz entre 35.000 a 100.000 mwatt/seg/cm2.

A SNatural produz equipamentos com a lâmpada envolvida por uma proteção que a isola da água. Os equipamentos podem vir com medidores de horas de uso que indicam a troca da lâmpada.

Equipamento UVNat	Água Potável (M3 /h- litros/s)	Efluentes (M3 /h- litros/s)
1501	Até 0,5 (0,14)	Até 0,35 (0,10)
3001	1,5 (0,40)	1,0 (0,30)
7501	5,7 (1,60)	4,0 (1,10)
7502	11,1 (3,10)	7,6 (2,10)
7503	17,0 (4,70)	11,5 (3,20)
7504	23,0 (6,30)	15,5 (4,30)
7505	28,4 (7,90)	19,1 (5,30)
7507	40,0 (11,00)	27,0 (7,50)
7519	108,0 (30,00)	75,6 (21,00)

O uso de equipamentos de esterilização e desinfecção ultravioleta no controle da **Anemia Infecciosa do Salmão** (**AIS**), uma doença virótica encontrada em fazendas de Salmão já identificada na Escócia, Noruega e Canadá que ataca as células endoteliais causando hemorragia nos órgãos, severa anemia e rápida mortandade. O **vírus é transmitido pela água** e, embora o Salmão seja a única espécie conhecida sensível, outras espécies de peixe podem ser portadoras.

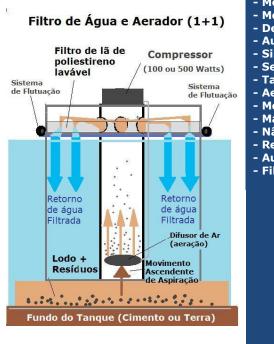
Usa-se o hipoclorito de sódio, o ozônio e a **desinfecção Ultravioleta** como desinfetantes para o tratamento da água com sangue. Como o cloro esta se tornando inaceitável por problemas ecológicos o Ozônio e a desinfecção ultravioleta – UV, são alternativas efetivas. Com o Ozônio, encontrou-se um mínimo de 8 mg/l/minuto de ozônio a ser adicionado à água para tratamento o que acarreta um custo alto de equipamento.

No caso do **Tratamento Ultravioleta - UV**, indica-se uma necessidade mínima de **120 mj/cm2** para tratar os efluentes.

Sintomas da Anemia Infecciosa

O controle de Septicemia Hemorrágica Viral (VHS), um vírus da VHS afeta vários peixes, a Truta Arco -Íris, Salmonídeos e não Salmonídeos (Salmão do Atlântico, Bass Marinho, "Turbot", etc..). Causa letargia, anorexia, anemia e hemorragia generalizada com alto nível de mortandade. A transmissão ocorre em todos os estágios do desenvolvimento do peixe especialmente as formas mais jovens. Espalha-se principalmente por coabitação e alimentação, mas, já foi isolado no ovário e é passível de passar à descendência. Em água doce, a mortandade

pode atingir taxas de 100%. Trutas com menos de 6 meses podem adquirir a doença facilmente. Sistemas de Desinfecção Ultravioleta -UV supridos para sistemas de recirculação associados a **doses baixas de Ultravioleta -UV** da ordem de **32 mJ/cm²**, controlará mais de 99.9% da doença.


A Necrose Pancreática Infecciosa (IPN) é uma doença que ataca várias espécies de Trutas, Salmão e não Salmonídeos. Molusculos e Crustáceos são também susceptíveis. É transmitida de peixe para peixe por espécimes sob estresse e também existe a possibilidade de transmissão pelas ovas. Aparecimento em alevinos, resulta em mortalidade maior de 90%; peixes mais velhos são mais resistentes. Doses de 180 mJ/cm² são requeridas para controlar 99.9% do numero de vírus

7) Aero- Filtro – Aerador e Filtro de Lodo

O sistema de aqüicultura com recirculação é dependente de seu sistema de limpeza. Na **Fazenda de Peixe**, os sedimentos sólidos (particulados) são removidos por sedimentação e filtração dentro do clarificador. A matéria orgânica dissolvida é removida pelo crescimento bacteriano na superfície do biofiltro assim como em outras partes submersas.

O sistema de purificação de água é feito com um biofiltro dimensionado para 350 kg de biomassa que se insere dentro do tanque. Cada biofiltro é formado de um aerador, um filtro para material particulado em fibra de poliestireno lavável para retirada periódica de fezes e restos e alimento e superfície para desenvolvimento de biofilme. O sistema é flutuante de fácil de manuseio.

O **AEROFILTRO FD** desestratifica as camadas de água oxigenando a baixo custo eliminando a zona morta do fundo aumentando a área útil do viveiro e retira o lodo do fundo fintrando-o o oxigena o tanque.

- Menor relação KWH/kg de <u>02;</u>
- Movimentação de água;
- Desestratificação;
- Ausência de óleo e lubrificação;
- Silencioso;
- Sem Aerossóis;
- Tamanho de bolha de 1 3 mm;
- Aeração de profundidade;
- Movimentação continua da água;
- Mais oxigênio /CV instalado;
- Não causa erosão no fundo;
- Reduz o lodo, amônia e DBO;
- Aumento da área útil do viveiro;
- Filtração de fezes, lodo e algas;

- Sem engrenagens e sem erosão Materiais de construção: aço inox, PEAD e PVC
- Aeração com uso de difusores de membrana

Aerador	Aerador Potencia Dimensões		Peso	Biomassa
	(watts)	(Diâmetro - Cm)	(Kg)	Peixe (Kg)
AeroFILTRO FD 003	40	600 MM	15	500
AeroFILTRO FD 007	100	600 mm	20	1000
AeroFILTRO FD012	500	600 mm	25	5 000

Capacidade Produção Aeradores Aeromax FD (100 e 500 watts)

Caracerísticas	FD 003	FD 007	FD 012
Produção de Ar (m3/Min)	0,04	0,1	4,5
Nr de difusores (150 mm - autoafundantes)	1	2	6
Vazão de Ar/difusor (Litros/min)	50	50	50
Produção de Oxigênio (Gr/hora)	70	150	700
*Biomassa em crescimento (Tons)	0,5	1	5
**Biomassa em manutenção (tons)	1	2	10
Motorização (watts)	40	100	500
Energia	110/220	110/220	110/220

^{*}Consumo Médio: 0,1 gr/hora/kg peixe vivo

9) Produtos Químicos

Corante Aquático - Azul Nat™

O corante se espalha rapidamente pelo lago levando-o a um azul natural atraente para pratica de esportes aquáticos e natação. O corante filtra o espectro azul da luz solar inibindo em parte o desenvolvimento de algas cianofíceas. Usando corantes aquáticos se reduz a penetração de raios solares retirando cores como o marrom terra e outras cores.

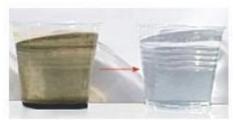
Típicas aplicações de 1 litro para cada 20 m3 de água dão à água uma coloração azul piscina. Dosagens maiores podem ser feitas para alcançar o efeito desejado. Por ser biodegradável a cada 2 - 3 meses poderá ser reaplicado.

Cuidados: Corantes aquáticos são concentrados e podem colorir roupas, pele e rochas em

^{**} Consumo Médio: 0,05 gr/hora/kg peixe vivo

caso de respingos. O corante não é perigoso nem tóxico mesmo a altas dosagens. Quando aplicar o corante use luvas de borracha.


9.2) Controle de Algas Verdes - Oxi Nat


Surtos de algas unicelulares aparecem em tanques, lagos e piscinas devido à presença de Fósforo e do Nitrogênio em níveis acima de 3 – 5 mg/l. Isto ocorre em lagos por fertilização agrícola das terras vizinhas, pó levantado nas estradas e por acúmulo de matéria orgânica (folhas, galhos, etc..), ração, etc.. É difícil controlar estes adubos naturais por via química, sem afetar os peixes.

SNatural desenvolveu o **Oxinat,** produto de origem natural, na forma de cristais brancos que inibem e matam as algas verdes

Sem Oxinat

Com Oxinat

Uso do Produto:

Dosagem: 10 - 50 mg/litro de água

Ex.: para 1 m3 (1 000 litros) de água usar de 10 a 50 gr do produto (1 colher de café equivale a 2 gr e uma colher de chá a 5 gr)

1) Espalhe os cristais uniformemente sobre o tanque e circule a água por 1 hora; 2) Desligue a circulação ou os aeradores ARMAX e deixe as algas mortas sedimentarem; 3) Em 1 dia aspire o fundo por um sistema comum de filtro de piscina.; Reaplique toda a vez que as algas voltarem

9.3) Controle da Qualidade da Água e Lodo – Bio Nat

O Bio Nat é um produto granular castanho escuro, coquetel de microorganismos e enzimas GRAS (Generaly Regarded as Safe) com aplicações comerciais variadas. É usado para controle de odores e moscas e mau cheiro, reativação e limpeza de sistemas de esgotos, controle de gorduras e redução de DBO, redução de lodo e aumento da capacidade digestiva em estações de tratamento de esgotos e aqüicultura. Controla de gás sulfídrico (H2S), fixa amônia e desentope fossas.

Principais Usos:

Controle de mau cheiro em bueiros e gradeamento

- 1) Reabilitação de lagoas de estabilização, redução de lodo profundo em lagoas de aeração, sedimentação, decantação, lagoas anaeróbias e facultativas.
- 2) Desentupimento por lodo em reatores anaeróbios e aeróbios, desentupimento de sistemas sépticos, fossas e sumidouros.
- Redução de lodo de fundo de lagos e tanque na aquicultura.
- Redução de odores em esterqueiras, abatedouros, granjas, áreas de compostagem e depósitos de lixo.
- 5) Cheiro de cigarro, odores desagradáveis e mau cheiro.

Restaurantes/Casas	Quantidade
Odores e Cigarro	Molhar levemente
Lixeiras	Molhe
Ralos de Cozinha	30 a 60 ml por ralo
Lixeiras de Comida	Limpeza e Enxágüe Final
Tapetes e Forrações	Molhar levemente
Pia de cozinha e lava-pratos.	½ copo
Banheiros e pisos	Enxágüe Final e Pano Úmido
Urinóis	30-60 ml por dreno
Pisos	*Água quente. Final pano Úmido
Vaporizadores e ar condicionado Para retirada de odores	Vaporização: ½ copo

Estábulos

Restaurantes

Diluição

Resultado de Tratamento de Lagoas e Efluentes

9.4) Controle de Algas Verdes e Outros Sedimentos – Nat Floc™

Água de tanques, lagos e rios, acumulam matéria orgânica, enxurradas, proliferação de algas verdes, etc.. Para controlar estas algas, sedimentos e turbidez, certos parâmetro químicos precisam ser controlados e ajustados. O pH por exemplo, em aquários de água doce oscila entre 5.5 e 7.5, já em aquários de água salgada, entre 8.0 e 8.5. Os peixes adoecem rapidamente quando o valor de pH é inferior 4.5 ou maior que 9.0. Outro parâmetro importante e normalmente desprezado na criação de peixes, é a alcalinidade que representa a capacidade da água resistir às mudanças de pH. Se a alcalinidade for baixa, o pH altera-se continuamente durante o dia pela ação do gás carbônico e deixa o tanque vulnerável a doenças e corrosão.

Controle das Algas Verdes

Instruções

- 1) Medir a alcalinidade e o pH da água com o kit
- 2) Elevar a alcalinidade para **120-150 ppm (mg/l)** com Barrilha (Bi/Carbonato de Sódio) comum na proporção de 100 gr/m3 de água dependendo da alcalinidade original. (Ver Catalogo)
- 3) Após elevar a alcalinidade, verificar se o pH esta entre 7,2 e 7,4 ideal para os peixes.
- 4) Com o pH entre 7,2 e 7,4 e alcalinidade entre 120 e 150 ppm colocar o **Natfloc** na proporção de 6 ml/m3 (1 000 litros) de água.
- 5) Manter a agitação constante da água no tanque para que o **Natfloc** entre em contato com a poluição, algas e detritos.
- 6) Com 2-3 dias os resíduos tendem a **flocular e decantar no fundo da lagoa** e podem ser retirados com aspiração.

Indicador de pH e Alcalinidade

Aplicação do Nafloc e do Clarificante

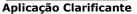
Produtos – Tratamento de Água

Processo de Decantação

O processo de tratamento é progressivo e pode demorar 30 dias dependendo do tamanho do tanque ou lago. Uma filtração adicional ou aspiração será necessária para remoção dos resíduos decantado

A concentração dos parâmetros é determinada por KIT´s simples fornecidos pela SNatural.

9.5)Transparência da Água - (Cristal Nat)


Tanques, lagos e rios com vida aquática acumulam matéria orgânica, nutrientes minerais, rações, dejetos, água de chuva e enxurradas, poluição humana, detergentes e efluentes industriais que lançam nitrogênio e fósforo na água ajudando na proliferação de algas e turvamento a água, comprometem a própria vida aquática e alteram sua qualidade.

Se um líquido contém substâncias sólidas não dissolvidas, a luz que atravessa o líquido fica em parte absorvida. A turbidez se deve a partículas em suspensão ou colóides: argilas, limo, terra finamente dividida, etc.

Turbidez para vários tipos de água		
Tipo de Água	Valor (NTU)	
Água Deionizada	0,02	
Água Potável	0,02 - 0,5	
Água de Manancial	0,05 - 10	
Água Residual	70 - 2000	
Água Branca (indústria de papel)	60 - 800	

Clarificante: Agua Potável

O processo de tratamento é progressivo e pode demorar 30 dias dependendo do tamanho do tanque ou lago. Uma filtração adicional ou aspiração será necessária para remoção dos resíduos decantados

9.6) Controle de Alcalinidade e pH - Bicarbonato de Sódio

O Bicarbonato de Sódio pode ser usado como tampão contra mudanças bruscas de pH e aumentar a alcalinidade total em um sistema de cultivo de peixes. Normalmente, os sistemas de recirculação exigem uma ou duas doses semanais. É aconselhável manter um pH entre 6,5 e 8,5, dependendo da espécie e uma alcalinidade total entre 50 e 200 mg / l. Se o pH e alcalinidade fôr inferior à faixa sugerida, pode ser corrigida através da adição de bicarbonato de sódio.

Para calcular com precisão o valor mínimo necessário para uma dada mudança, uma amostra da água a ser ajustado, seguindo os seguintes passos: 1) Amostre 20 litros de água para ajuste; 2). Teste de pH e alcalinidade; 3) Dissolva ¼ de uma colher de chá de Bicarbonato de Sódio dentro do balde; 4) Reteste o pH e a alcalinidade. (Note: pH não deve ser ajustado mais que uma unidade em 24 horas e a alcalinidade não deve ser ajustada em mais de 50 mg/l a cada 24 horas.) Se o resultado tiver sido alcançado sua dosagem é de ¼ de uma colher e chá de bicarbonato de sódio para cada balde de água de 20 litros

9.7) Controle de Cloro - Tiossulfato de Sódio

O Tiossulfato de sódio é o principal componente da dos removedores de cloro e cloraminas. Quando água municipal é utilizada para a aqüicultura, o uso do Tiossulfato de Sódio para neutralização do cloro é importante para a eliminação imediata do cloro. A dose varia com o pH da água, entretanto, taxas entre 1,6 - 2,6 partes de Tiossulfato de sódio por 1 parte de cloro são adequadas. Para calcular o montante mínimo necessário para uma dada mudança, um teste simples da água a ser ajustado. 1) Coletar 20 litros de água a ser ajustada; 2) Meça o Cloro; 3) Dissolva ¼ colher Tiossulfato de sódio na amostra; 4) Reteste os níveis de cloro. Se o cloro não é detectado, a sua taxa de dosagem é ¼ colher Tiossulfato de sódio por 5 litros de água no sistema; 5) Se os resultados desejados não forem alcançados, dissolver outro ¼ colher de chá de Sódio Tiossulfato e reteste para determinar a mudança. Continue a adicionar em incrementos de Tiossulfato de sódio de ¼ colher de chá, teste a amostra, após Tiossulfato de sódio estar completamente dissolvido e até que os resultados desejados sejam alcançados. (Nota: 1 xícara - 48 colheres de chá).

Lembre-se: pH irá afetar as dosagem, portanto ajuste o pH da água de tratamentos posteriores para coincidir com o pH da água de tratamento do passado onde a dosagem foi derivada dos procedimentos acima. Nota: até 1000 ppm de Tiossulfato de Sódio não afeta os peixes.

9.8) Controle de Amônia - Zeolitos

Zeolita é um tipo de produto natural de argila que é usada para absorver amônia. Ela pode ser regenerada durante a noite usando um banho de água salgada. Isto irá regenerá-la para 85% de sua capacidade original. A Zeolita só pode ser usado em água doce. Para remover 1 ppm de amônia são precisos 2,5 kg da zeólitas colocada em um saco de malha e colocados no tanque. Isto é normalmente usado como um backup e utilizado apenas em situações de emergência, se a falha biofiltro e / ou amônia se eleva a níveis inaceitáveis.

A Zeolita captura a amônia em seus poros e quando se satura, precisa ser trocada ou reativada. Uma grama (01 gr) de zeolita "captura" 3 mg de amônia (amônia total). Para remover 1 mg/l (ppm) de amônia de seu tanque vo precisa de pelo menos 1/2 kg de zeolita por metro cúbico de água. A circulação da água pela zeolita é necessária para fazer a amônia ter contato com os poros de captação. Uma recomendação é pendurar sacos de estopa cheios de zeolita dentro do tanque e perto da área de maior circulação de água. Reative a zeolita submergindo-a numa solução salina de 5% por 8 horas enxágüe com água fresca e depois reuse-a. Outro método de reativação da zeolita é deixar secar ao ar por vários dias em climas quentes. A eficiência da reativação diminui 10% a cada ciclo de reativação.

9.9) Controle de Dureza - Cloreto de Cálcio

Dependendo da capacidade tampão da sua água, o cloreto de cálcio podem aumentar ou diminuir o pH. Níveis normais de dureza cálcica em sistemas de recirculação devem ser mantidos entre 100-250 mg / l, dependendo da espécie. Peletes de rápida dissolução têm de 0,3 a 1,3 cm de tamanho. **Cuidado**: Evite contato com olhos, pele ou roupas. Evite respirar o pó ou névoa. Se a sua dureza de cálcio é inferior ao intervalo sugerido de 100-250 mg / l, dependendo da espécie, corrija com a adição de cloreto de cálcio. Para calcular o valor mínimo necessário para uma dada mudança, uma amostra da água a ser ajustado: 1) Coletados 45 litros de água a ser ajustado; 2) Teste o pH, a alcalinidade total e a dureza de cálcio. O Cloreto de cálcio irá alterar o pH e a alcalinidade. O PH não deve

ser ajustado em mais de 1 unidade a cada 24 horas. Alcalinidade não deve ser ajustada mais de 50 ml / l, a cada 24 horas em águas contendo peixes; 3) Dissolver 6 gramas (cerca de 1 colher de chá) de cloreto de cálcio na amostra. 4) Reteste a dureza da amostra, o pH e a alcalinidade. Se os resultados desejados forem alcançados, a sua dosagem é de 6 gramas de cloreto de cálcio por 45 litros de água no sistema. 5) Se os resultados desejados não forem alcançados, dissolva mais 6 gramas de cloreto de cálcio na amostra e reteste para determinar a mudança. Continue a adicionar cloreto de cálcio em incrementos de 6 gramas, teste a amostra, depois que o cloreto de cálcio foi totalmente dissolvido, até que os resultados desejados sejam alcançados.

Nota: dissolva a quantidade determinada de cloreto de cálcio em um balde de água antes de adicionar ao sistema. (Atenção: mistura vai ficar muito quente) Adicionar o caldo ao sistema lentamente. Teste o sistema para verificar se os resultados desejados foram alcançados.

10) Kits

10.1) Medidores de Oxigênio Dissolvido (OD)

O oxigênio dissolvido na água é usado intensamente pelos microorganismos decompositores da matéria orgânica, fazendo concorrência às necessidades dos peixes. O oxigênio se dissolve e se incorpora na água por difusão superficial e por ação dos microorganismos fotossintéticos como as algas. Estas, entretanto, enquanto o liberam para a água durante o dia, à noite o consomem, produzindo dióxido de carbono (CO2) para a água. A difusão superficial do oxigênio, numa situação natural, representa apenas 5% do total de oxigênio, mas, se na superfície houver vento e ondulação, a tensão superficial pode ser quebrada e esta pequena participação pode ser aumentada.

Em lagos naturais observamos presença de O2 (3 a 5 mg/litro) apenas nos primeiros metros, caindo rapidamente para zero abaixo dos 3 metros de profundidade devido à existência da aeração superficial e à produção de O2 via microorganismos fotossintetizantes nesta zona.

10.2) Medidores de pH, Alcalinidade, Cloro e Amônia

A **amônia** é encontrada na água na forma de NH_3 (amônio) e de NH_4 (amônia), o primeiro é altamente tóxico, ocorrendo no tanque de acordo com o pH e temperatura. As leituras dos testes práticos determinam a concentração das duas formas, amônio e amônia, o que explica a presença de peixes saudáveis em águas com mais de 20 mg/L de amônia em pH ácido. Com pH neutro a concentração de NH_3 é relativamente baixa tendendo a aumentar com o pH. Concentrações de amônia total em torno de 6 ppm podem ocasionar alguns problemas aos peixes, principalmente com baixos níveis de

OD. O ideal é que a concentração de amônia total figue abaixo de 1,5 a 2 ppm.

O **nitrito** (NO₂⁻) é resultante do processo de oxidação de bactérias, principalmente as *nitrossomonas* sobre a amônia; o **nitrato** (NO3-), por sua vez, se origina num processo semelhante, a partir do nitrito, realizado por bactérias como as *nitrobacter*. O nitrito pode ser estressante para os peixes na concentração de 0,1 ppm; com uma concentração de 0,5 ppm o sangue pode adquirir uma cor chocolate dando origem a um sintoma conhecido

como doença do sangue marrom. Esta forma de hemoglobina não é capaz de transportar o oxigênio, matando os peixes por asfixia.

A **alcalinidade** representa a quantidade de carbonato de cálcio (CaCO₃) presente na água; águas duras apresentam mais de 40 mg/litro. Águas com menos de 20 mg/litro apresentam baixa atividade no biofiltro. A alcalinidade se relaciona com o pH, gás carbônico e a nitrificação da amônia. As bactérias nitrificantes do biofiltro retiram o carbonato da água para formar o seu esqueleto e o processo de oxidação da amônia fornece energia para o processo. Monitoram-se os níveis de carbonato de cálcio para que fique entre 70 a 120 ppm. Para cada grama de amônia que entra no sistema são necessárias 7 gramas de carbonato de cálcio para sua neutralização.

O **pH,** medida da concentração de íons hidrogênio na água, determina as condições ácidas ou básicas do sistema. Os valores de pH variam entre 0 e 14, sendo neutro o valor de pH = 7. Valores abaixo de 7 são considerados ácidos e acima, alcalinos ou básicos. Em águas muito ácidas, os peixes apresentam um excesso de produção de muco enquanto que em águas alcalinas o muco é ausente. O valor ideal deve ser mantido entre 7 e 7,5.

Qualidade Água	Teste	Faixa Ideal (criação de Peixe)
Temperatura	Termômetro (max & min)	Dependente de espécies Tilápia 25 a 27°C
Oxigênio dissolvido (1)	Com indicador químico Medidor Eletrônico Equipamentos Colorimétrico	> 5 ppm para a maioria das espécies
Nitrogênio amoniacal total (ionizado e não ionizado)	Equipamentos colorimétrico Com indicador químico	NH3 < 0.02 PPM
Nitrito (2)	Equipamentos colorimétrico Com indicador químico	< 1 ppm; 0.1 ppm em água mole
PH (3)	Equipamentos colorimétrico Com indicador químico Medidor Eletrônico	6-8
Alcalinidade	Titulação com medidor de pH Com indicador químico	50-300 ppm de carbonato de cálcio
Dureza	Com indicador químico	>50 ppm, preferivelmente >100 ppm CaCO3
Gás carbônico	Com indicador químico	< 10 ppm
Salinidade (4)	Medidor de condutividade Refratometro	Espécies tipicamente dependentes < 0.5-1.0 ppt (peixes água doce)
Ferro (5)	Equipamento colorimétrico Precipitação vermelha visível	< 0.5 ppm
Cloro (5)	Equipamento colorimétrico Com indicador químico	< 0.02 ppm
Gás sulfídrico(H2S) (5)	Equipamento colorimétrico	Nenhum nível detectado

10.3) Medidores de Microorganismos

Níveis de microorganismos podem ser analisados com um kit na forma de uma lingüeta recoberta de meio de cultura. Colocada na água "contaminada" deve ser incubada por 1-2 dias para desenvolvimento dos microorganismos e contagem por comparação com uma tabela guia, o número de unidades formadoras de colônias é estabelecido. (UFC/100ml de água).

O teste indicará se o tratamento esta sendo efetivo, podendo-se aumentar ou diminuir a dosagem de Ultravioleta para atingir a esterilização da água desejada a um dado gasto de energia elétrica. (KWH/m3 água).

